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Abstract—Free-space optical (FSO) communication offers a
promising solution for high-bandwidth satellite-ground and inter-
satellite communications. However, maintaining line of sight,
beam alignment, and minimal pointing error remains a significant
challenge. This study provides a survey of recent advancements
in pointing error mitigation techniques for FSO communication.
Key approaches include tree-based regressors, the K-Nearest
Neighbor (KNN) algorithm, and convolutional neural networks
(Conv1D). The survey highlights that ML-based methods sig-
nificantly enhance pointing accuracy compared to traditional
correction techniques, with KNN excelling in nonlinear error
correction, tree-based models offering robust predictions, and
Conv1D providing precise gain estimation.

Index Terms—Free-space optical communication, pointing er-
ror, machine learning, convolutional neural network, K-nearest
neighbor, tree-based regression.

I. INTRODUCTION

Over the years, free-space optical (FSO) communication has
become significantly important, from Starlink and SpaceX to
NASA’s deep space exploration. FSO communication offers
unique features: high bandwidth, a license-free spectrum, high
data rates, easy and quick deployability, low power require-
ments, and minimal mass constraints. It also has applica-
tions in remote sensing, radio astronomy, military operations,
disaster recovery, last-mile access, wireless cellular network
backhaul, and more [1], [2].

Although FSO communication systems offer many benefits,
they face significant challenges, one of the most critical
being pointing errors. Pointing errors occur when there is a
misalignment between the transmitted communication beam
and the receiver due to factors such as mechanical vibrations,
atmospheric disturbances, or terminal movement. These errors
can result in substantial loss of received signal power and, in
severe cases, lead to a complete loss of the communication
link. Addressing pointing errors is crucial to ensure reliable
and efficient long-distance optical communication [1], [3].

This paper provides a comprehensive survey on pointing
errors and their mitigation techniques for inter-satellite links
(ISLs) in free-space optical communication (FSO). Addi-
tionally, the survey will cover some mitigation techniques
utilizing the latest machine learning models and compare them

with existing models. Mitigating these errors in satellite FSO
systems is crucial to improve acquisition probability, shorten
capture time, and maintain the quality of the communication
link.

II. POINTING ERROR AND RELATED CHALLENGES

Pointing error refers to the misalignment of the optical beam
from its intended target, which in the context of free space op-
tical (FSO) communication, is typically the receiver aperture.
It represents a deviation from the ideal line-of-sight (LOS)
connection and can significantly degrade the performance of
an FSO system [4]. Several challenges contribute to pointing
errors in FSO communication:

• Platform Jitter and Mechanical Vibrations: Thruster fir-
ings, reaction wheels, solar panel movement, or antenna
adjustments can induce mechanical disturbances [1], [2].
Vibrations and platform jitter cause deviations in the di-
rection of the transmitted optical beam. These deviations
can be in the order of microradians, which is significant
over long distances [5].

• Point-Ahead Angle (PAA) Misalignment: Due to the rela-
tive motion between satellites, the transmitter must point
ahead of the receiver’s current position to account for
the beam’s travel time. Errors in estimating the PAA due
to orbital uncertainties or incorrect sensor data result in
beam misalignment [3], [5], [6].

• Acquisition, Pointing, and Tracking (APT) Errors: The
APT system locks the transmitted beam onto the receiver.
Beam acquisition and tracking become difficult due to
inaccuracies in the optical and electronic subsystems,
especially during the initial link establishment [2], [6].

• Beam Divergence and Propagation Loss: Inter-satellite
links use narrow laser beams for high data rates, but
narrow beams are more prone to pointing errors. A small
angular misalignment can cause the beam to completely
miss the receiver at long distances [1], [2].

These challenges lead to reduced received signal power,
increased bit error rates, decreased throughput, and, ultimately,
link failure.



Over the years, many mitigation techniques have been used
to reduce pointing errors. These include mechanical systems
such as fast-steering mirrors (FSMs), gimbals, and inertial
measurement units (IMUs) for beam steering, as well as
adaptive optics, modulation and redundancy, feedback control
systems, and wavelength division multiplexing (WDM) with
polarization interleaving [1], [2], [6].

Although these traditional techniques have been used for
many years, they face several limitations due to the dynamic
nature of space and the need for precise alignment. Tradi-
tional hardware and control algorithms, such as proportional-
integral-derivative (PID) controllers, do not account for all
parameters and environmental factors necessary to minimize
pointing errors [5].

On the other hand, over the last 10-15 years, advancements
in machine learning models and modern algorithms have sig-
nificantly improved. Simultaneously, the cost of computational
resources, such as GPUs and edge processors, has decreased
[7]. These scientific breakthroughs have made it possible to
implement intelligent systems onboard satellites for real-time
pointing error correction.

III. OVERVIEW OF MACHINE LEARNING MITIGATION
TECHNIQUES

This literature survey provides a brief overview of three
machine learning models and explains how they achieve better
results.

A. K-Nearest Neighbor (KNN) Model: The paper [8] pro-
posed a K-Nearest Neighbor based nonparametric ap-
proach to correct nonlinear pointing errors after linear
errors have been compensated. The pointing error is
defined as the difference between the actual direction and
the ideal guide direction of the Line of Sight (LOS):

∆A = Â−A, ∆E = Ê − E

where Â and Ê are the azimuth and elevation guide
values. A and E are the actual measured values.
Linear pointing errors are first corrected using a param-
eter model. The residual errors after this correction are
considered nonlinear pointing errors. Parameter models
can correct linear pointing errors, they cannot effectively
handle nonlinear errors.
The KNN algorithm is a nonparametric method that
estimates the value of a test sample based on its k nearest
neighbors in the dataset. The process involves:
• Distance Measurement: The Euclidean distance be-

tween two points P1 and P2 (in azimuth-elevation
space) is computed as:

d(P1, P2) =
√

(dA)2 + (dE)2

where:

dA = min(|A1−A2|, 2π−|A1−A2|), dE = |E1−E2|

• Selection of Neighbors: The k nearest neighbors to the
test sample (target pointing direction) are selected from

historical calibration data (i.e., known star positions
and pointing errors).

• Weight Calculation: A Gaussian-like function is used
to assign weights to the nearest neighbors based on
their distances:

WTi =
1√
2π

exp

(
− d2i
2d2k

)
where dk is the distance of the k-th nearest neighbor.
The weight is normalized:

wi =
WTi∑k
j=1 WTj

• Prediction of Nonlinear Pointing Error: The predicted
pointing error is computed as a weighted average of
the pointing errors of the nearest neighbors:

ypred =

k∑
i=1

wiyi

where yi is the known pointing error of the i-th
neighbor.

The optimal value of k (i.e., the number of neighbors) is
determined using Generalized Cross Validation (GCV):

GCV (k) =

∑n
i=1(yti − ŷti)

2(
1− 1

n

∑n
i=1 wi1

)2
where, yti is the true pointing error of the i-th known
sample and ŷti is the predicted pointing error for the same
sample. The value of k is chosen to minimize GCV (k).
The system is tested using an optical communication
terminal (OCT) that tracks and measures star positions in
various directions while mounted on a motion platform.
The OCT records the azimuth (A) and elevation (E)
angles, attitude measurements, and encoder readings.
Before correction, the initial pointing error was large
(1312.9 µrad). After Parameter Model correction, the
pointing error was reduced to 87.3 µrad. Finally, after
KNN correction, the pointing error was further reduced
to 69.0 µrad for calibration stars and 70.8 µrad for
target stars. The proposed KNN algorithm effectively
corrects nonlinear pointing errors after linear errors have
been compensated. Experimental results show significant
improvement in pointing accuracy, demonstrating that a
nonparametric KNN approach is well-suited for mitigat-
ing pointing errors in motion platforms.

B. Convolutional Neural Network (CNN)-Based Closed-
Loop Control System: In [5], a 1D convolutional neural
network (Conv1D) was employed to mitigate beam point-
ing errors in satellite-to-ground free-space optical (FSO)
communication by predicting optimal gain values for a
closed-loop feedback control system. The Conv1D model
processes sequential input data, such as control and noise
parameters, atmospheric turbulence indices, and system
vibrations, to extract temporal features and estimate the
gain matrix needed to stabilize beam displacement. The



Fig. 1: Network architecture for the 1D convolution multi-output regression
model [5].

architecture includes convolutional layers to capture pat-
terns in time-series data, activation functions for non-
linear mapping, and pooling layers to enhance robustness
against noise. By continuously feeding real-time pointing
error measurements into the model, it dynamically adjusts
the transmitter’s position to maintain beam alignment
with the receiver.
The Conv1D model architecture used for multi-output
regression in this study is designed to predict the gain
matrix of the closed-loop system for free space optical
(FSO) satellite-to-ground communications. It uses con-
volutional layers to capture temporal dependencies in
the input data.The input features are temporal data that
vary over time, such as the scintillation index, Gaussian
noise, and the level of attenuation. These input features
are fed into the Conv1D model. The initial Conv1D
layer consists of 64 filters with a kernel size of 7. This
large kernel size helps capture a wide range of local
patterns in the input data and gather information from a
broader span of neighboring time steps, making it suitable
for capturing longer-term dependencies. The activation
function used in the convolutional layers is ReLU.After
the initial layer, there are additional Conv1D layers with
smaller kernel sizes of 3 and 2, respectively. These
layers are used to capture more detailed and localized
patterns from the input data. While the initial Conv1D
layer captures broader features, these subsequent layers
extract finer-grained information. The number of filters
is also reduced in these layers to balance complexity and
prevent overfitting.A dropout layer with a rate of 0.5 is
included in the Conv1D model to address overfitting and
enhance generalization. This deactivates half of the units
during training to achieve a balance between retaining
information and effectively regularizing the model.A Max
Pooling 1D layer is used to down-sample the feature
maps, reducing their spatial dimensions.A flatten layer
reshapes the output of the previous layers to create a
compressed representation of the extracted features. The
first dense layer is responsible for making predictions
based on the learned representations from the preceding
layers. By applying an activation function, this layer
introduces non-linearity to the model, enabling it to
learn complex and non-linear relationships between the

Fig. 2: Optical beam, receiving aperture and the displacement vector yk [9]

flattened features and the target variables. The final dense
layer outputs the predicted gain matrix, which consists of
4 values. The model produces multiple output variables
that represent the elements of the 2 × 2 gain matrix K
[5].

C. Tree-based regression models: In [9], authors proposed
a multi-output regression model based on tree-based
algorithms to predict and optimize the gain matrix K
in a closed-loop feedback system, ensuring that the beam
remains centered on the receiver aperture. The pointing
error yk is that the system is modeled as a displacement
vector between position of the transmitted beam (θk) and
the receiver aperture (αk):

yk = d(θk − αk)

where d is the distance between the transmitter and
the receiver. The closed-loop system aims to minimize
the pointing error by adjusting the transmitted beam’s
position based on the observed displacement. The gain
matrix K determines the corrective feedback applied
to the system. The goal is to find an optimal K that
stabilizes the closed-loop system and reduces the pointing
error by ensuring:

∥yk∥ ≤ ϵ∥wk∥

where wk represents disturbances (e.g., noise, turbu-
lence), and ϵ is the disturbance attenuation level.
To predict the optimal gain matrix K, three tree-based
regression models are used:
• Decision Tree Regressor: A simple model that splits the

dataset based on feature values to predict K. It works
by recursively dividing the data space and assigning
predictions based on averages of the data in each split.

• Random Forest Regressor: An ensemble of decision
trees. Each tree is trained on a random subset of the
data, and the final prediction is obtained by averaging
the predictions of all trees. This helps reduce overfitting
and improves robustness.

• Gradient Boosting Regressor: An ensemble learning
method where trees are built sequentially. Each tree



is trained to correct the errors made by the previous
trees. This process focuses on minimizing the overall
prediction error.

The system uses multiple input parameters (features)
to predict K, including the system matrix (ap, al) of
the transmitter and receiver, the control matrix (bp) for
adjusting the beam, noise parameters (rp, rl) related to
disturbances, the scintillation index (σ2) representing at-
mospheric turbulence, the iiradiance (I) of the signal, and
white Gaussian noise components at both the transmitter
and receiver. Feature importance analysis showed that the
noise matrices and the scintillation index had a significant
influence on predicting the gain values.
A synthetic dataset was generated for training the ma-
chine learning models. The dataset was created based
on a stochastic state-space model using known system
parameters and turbulence levels. Multiple input-output
pairs were generated, where the inputs were the system
features and the outputs were the gain matrix K.
The tree-based regression models were trained on the
dataset to learn the mapping from the input features
to the optimal gain values K. The performance of the
models was evaluated using Mean Absolute Error (MAE),
Mean Squared Error (MSE), Root Mean Squared Error
(RMSE).
The model was tested on open-loop and closed-loop
systems. In the open-loop system, the pointing error
was significantly higher due to the absence of feedback
correction. In the closed-loop system, the predicted gain
matrix K was used to dynamically adjust the beam posi-
tion, resulting in a stable pointing error within allowable
limits. The pointing error was reduced from significant
values in the open-loop system to minimal alignment
errors in the closed-loop system.
The tree-based regression model effectively mitigates
pointing errors in FSO systems by predicting the op-
timal gain matrix for a closed-loop feedback system.
The decision tree regressor provided a good balance
of performance and simplicity, while random forest and
gradient boosting improved robustness and accuracy.

IV. CONCLUSION

An overview of pointing errors in FSO communication and
three machine learning-related mitigation methods is discussed
in this article. The growing trend of satellite communication,
along with the commercialization of satellites, is expected to
be a significant boost for FSO communication. With the rise
of edge computing and TinyML, the cost of implementing
these machine learning methods is anticipated to become more
affordable in the near future. These machine learning ap-
proaches demonstrate that the performance and cost efficiency
of communication using FSO can improve significantly.
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